1,947 research outputs found

    Cosmological constraints on neutrino self-interactions with a light mediator

    Full text link
    If active neutrinos undergo non-standard (`secret') interactions (NSν\nuI) the cosmological evolution of the neutrino fluid might be altered, leaving an imprint in cosmological observables. We use the latest publicly available CMB data from Planck to constrain NSν\nuI inducing ν−ν\nu-\nu scattering, under the assumption that the mediator ϕ\phi of the secret interaction is very light. We find that the effective coupling constant of the interaction, geff4≡⟨σv⟩Tν2g_\mathrm{eff}^4 \equiv \langle \sigma v\rangle T_\nu^2, is constrained at <2.35×10−27< 2.35\times10^{-27} (95\% credible interval), which stregthens to geff4<1.64×10−27g_\mathrm{eff}^4 < 1.64\times10^{-27} when Planck non-baseline small-scale polarization is considered. Our findings imply that after decoupling at T≃1T\simeq 1 MeV, cosmic neutrinos are free streaming at redshifts z>3800z>3800, or z>2300z>2300 if small-scale polarization is included. These bounds are only marginally improved when data from geometrical expansion probes are included in the analysis to complement Planck. We also find that the tensions between CMB and low-redshift measurements of the expansion rate H0H_0 and the amplitude of matter fluctuations σ8\sigma_8 are not significantly reduced. Our results are independent on the underlying particle physics model as long as ϕ\phi is very light. Considering a model with Majorana neutrinos and a pseudoscalar mediator we find that the coupling constant gg of the secret interaction is constrained at ≲7×10−7\lesssim 7\times 10^{-7}. By further assuming that the pseudoscalar interaction comes from a dynamical realization of the see-saw mechanism, as in Majoron models, we can bound the scale of lepton number breaking vσv_\sigma as ≳(1.4×106)mν\gtrsim (1.4\times 10^{6})m_\nu.Comment: V2. Replaced to match version accepted for publication in PRD. Added more detailed discussion about parameter degeneracies. 14 pages, 6 figures, 3 table

    CMB low multipole alignments in the Λ\mathbf{\Lambda}CDM and Dipolar models

    Full text link
    The dipolar model \cite{Gordon:2005ai} has attracted much interest because it may phenomenologically explain the CMB hemispherical power asymmetry found in the WMAP and Planck data. Since such a model explicitly breaks isotropy at large angular scales it is natural to wonder whether it can also explain other CMB directional anomalies. Focusing on the low ℓ\ell alignments and assuming Λ\LambdaCDM, we confirm that the quadrupole/octupole and the dipole/quadrupole/octupole alignments are anomalous with a significance up to 99.9%99.9\% C.L., for both WMAP and Planck data. Moreover, we show for the first time that such features are anomalous also in the dipolar model, roughly at the same level as in Λ\LambdaCDM. We conclude that the dipolar model does not provide a better fit to the data than the Λ\LambdaCDM.Comment: 13 pages, 2 figures and 4 table

    Fast Spherical Harmonic Analysis: a quick algorithm for generating and/or inverting full sky, high resolution CMB Anisotropy maps

    Get PDF
    We present a fast algorithm for generating full sky, high resolution (∼5′\sim 5') simulations of the CMB anisotropy pattern. We also discuss the inverse problem, that of evaluating from such a map the full set of aℓma_{\ell m}'s and the spectral coefficients CℓC_\ell. We show that using an Equidistant Cylindrical Projection of the sky substantially speeds up the calculations. Thus, generating and/or inverting a full sky, high resolution map can be easily achieved with present day computer technology.Comment: 13 pages, LaTex, 5 PostScript figures included, 1 colour plate available (PostScript version, 1.6 Mb) at http://itovf2.roma2.infn.it/natoli

    CMB Polarization: Scientific Case and Data Analysis Issues

    Get PDF
    We review the science case for studying CMB polarization. We then discuss the main issues related to the analysis of forth-coming polarized CMB data, such as those expected from balloon-borne (e.g. BOOMERanG) and satellite (e.g. Planck) experiments.Comment: 6 pages, 4 figures. To appear in "Astrophysical Polarized Background" Workshop Proceedings, eds. S. Cecchini, S. Cortiglioni, R. Sault and C. Sbarra, AIP, in pres

    ROMA: a map-making algorithm for polarised CMB data sets

    Full text link
    We present ROMA, a parallel code to produce joint optimal temperature and polarisation maps out of multidetector CMB observations. ROMA is a fast, accurate and robust implementation of the iterative generalised least squares approach to map-making. We benchmark ROMA on realistic simulated data from the last, polarisation sensitive, flight of BOOMERanG.Comment: Accepted for publication in Astronomy & Astrophysics. Version with higher quality figures available at http://www.fisica.uniroma2.it/~cosmo/ROM

    Pre-Inflationary Relics in the CMB?

    Get PDF
    String Theory and Supergravity allow, in principle, to follow the transition of the inflaton from pre-inflationary fast roll to slow roll. This introduces an infrared depression in the primordial power spectrum that might have left an imprint in the CMB anisotropy, if it occurred at accessible wavelengths. We model the effect extending Λ\LambdaCDM with a scale Δ\Delta related to the infrared depression and explore the constraints allowed by {\sc Planck} data, employing also more conservative, wider Galactic masks in the low resolution CMB likelihood. In an extended mask with fsky=39%f_{sky}=39\%, we thus find \Delta = (0.351 \pm 0.114) \times 10^{-3} \, \mbox{Mpc}^{-1}, at 99.4%99.4\% confidence level, to be compared with a nearby value at 88.5%88.5\% with the standard fsky=94%f_{sky}=94\% mask. With about 64 ee--folds of inflation, these values for Δ\Delta would translate into primordial energy scales O(1014){\cal O}(10^{14}) GeV.Comment: 16 pages, 6 figures, 1 table. Final version to appear in Physics of the Dark Universe. Contains: more detailed discussion of galactic masking, improved estimat
    • …
    corecore